1,216 research outputs found

    Bcl-2 prevents nitric oxide-mediated apoptosis and poly(ADP-ribose) polymerase cleavage

    Get PDF
    AbstractToxic effects of nitric oxide (NO) were suggested to be mediated by its metabolite peroxynitrite, a strong oxidizing agent. To determine if antioxidative effects of Bcl-2 protooncogene can prevent NO-mediated apoptosis, we used vaccinia virus recombinants expressing mouse inducible NO-synthase, iNOS, or human bcl-2 genes. Expression of iNOS in HeLa G cells induces apoptosis which can be prevented by co-expression of bcl-2 or by addition of reduced glutathione or N-acetylcysteine. We demonstrate that this NO-induced apoptosis proceeds through the activation of interleukin-1β-converting enzyme-like proteases and cleavage of the poly(ADP-ribose) polymerase, an effect which is also prevented by Bcl-2.© 1997 Federation of European Biochemical Societies

    Isolation and Characterization of Renal Erythropoietin-Producing Cells from Genetically Produced Anemia Mice

    Get PDF
    Understanding the nature of renal erythropoietin-producing cells (REPs) remains a central challenge for elucidating the mechanisms involved in hypoxia and/or anemia-induced erythropoietin (Epo) production in adult mammals. Previous studies have shown that REPs are renal peritubular cells, but further details are lacking. Here, we describe an approach to isolate and characterize REPs. We bred mice bearing an Epo gene allele to which green fluorescent protein (GFP) reporter cDNA was knocked-in (EpoGFP) with mice bearing an Epo gene allele lacking the 3′ enhancer (EpoΔ3′E). Mice harboring the mutant EpoGFP/Δ3′E gene exhibited anemia (average Hematocrit 18% at 4 to 6 days after birth), and this perinatal anemia enabled us to identify and purify REPs based on GFP expression from the kidney. Light and confocal microscopy revealed that GFP immunostaining was confined to fibroblastic cells that reside in the peritubular interstitial space, confirming our previous observation in Epo-GFP transgenic reporter assays. Flow cytometry analyses revealed that the GFP fraction constitutes approximately 0.2% of the whole kidney cells and 63% of GFP-positive cells co-express CD73 (a marker for cortical fibroblasts and Epo-expressing cells in the kidney). Quantitative RT-PCR analyses confirmed that Epo expression was increased by approximately 100-fold in the purified population of REPs compared with that of the unsorted cells or CD73-positive fraction. Gene expression analyses showed enrichment of Hif2α and Hif3α mRNA in the purified population of REPs. The genetic approach described here provides a means to isolate a pure population of REPs, allowing the analysis of gene expression of a defined population of cells essential for Epo production in the kidney. This has provided evidence that positive regulation by HIF2α and negative regulation by HIF3α might be necessary for correct renal Epo induction. (282 words

    Mst1-FoxO Signaling Protects Naïve T Lymphocytes from Cellular Oxidative Stress in Mice

    Get PDF
    Background: The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. InC. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood. Methodology/Principal Findings: Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1 2/2 mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1 2/2 T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1 2/2 T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1 2/2 mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1 2/2 progeny. Interestingly, peripheral T cells from Mst1 2/2 mice were hypersensitive to c-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant. Conclusions/Significance: These data support the hypothesis that tolerance to increased levels of intracellular RO

    Crosstalk between Nuclear Factor I-C and Transforming Growth Factor-β1 Signaling Regulates Odontoblast Differentiation and Homeostasis

    Get PDF
    Transforming growth factor-β1 (TGF-β1) signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C) has been implicated in TGF-β1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-β1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-β1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-β1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-β1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-β1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogen-activated protein kinase pathway by TGF-β1. Moreover, degradation of NFI-C induced by TGF-β1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-β1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism

    Vesicoureteral Reflux and Other Urinary Tract Malformations in Mice Compound Heterozygous for Pax2 and Emx2

    Get PDF
    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans

    Cross-Regulation between Oncogenic BRAFV600E Kinase and the MST1 Pathway in Papillary Thyroid Carcinoma

    Get PDF
    BACKGROUND:The BRAF(V600E) mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A methylation, the regulatory mechanisms of RASSF1A-MST1 pathways remain to be elucidated, and the functional cooperation or cross regulation between BRAF(V600E) and MST1,which activates Foxo3,has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:The negative regulators of the cell cycle, p21 and p27, are strongly induced by transcriptional activation of FoxO3 in BRAF(V600E) positive thyroid cancer cells. The FoxO3 transactivation is augmented by RASSF1A and the MST1 signaling pathway. Interestingly, introduction of BRAF(V600E)markedly abolished FoxO3 transactivation and resulted in the suppression of p21 and p27 expression. The suppression of FoxO3 transactivation by BRAF(V600E)is strongly increased by coexpression of MST1 but it is not observed in the cells in which MST1, but not MST2,is silenced. Mechanistically, BRAF(V600E)was able to bind to the C-terminal region of MST1 and resulted in the suppression of MST1 kinase activities. The induction of the G1-checkpoint CDK inhibitors, p21 and p27,by the RASSF1A-MST1-FoxO3 pathway facilitates cellular apoptosis, whereas addition of BRAF(V600E) inhibits the apoptotic processes through the inactivation of MST1. Transgenic induction of BRAF(V600E)in the thyroid gland results in cancers resembling human papillary thyroid cancers. The development of BRAF(V600E)transgenic mice with the MST1 knockout background showed that these mice had abundant foci of poorly differentiated carcinomas and large areas without follicular architecture or colloid formation. CONCLUSIONS/SIGNIFICANCE:The results of this study revealed that the oncogenic effect of BRAF(V600E) is associated with the inhibition of MST1 tumor suppressor pathways, and that the activity of RASSF1A-MST1-FoxO3 pathways determines the phenotypes of BRAF(V600E) tumors

    Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis

    Get PDF
    Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Rac1 Deletion Causes Thymic Atrophy

    Get PDF
    The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation
    corecore